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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
5. MAPS AND DISCRETIZATION VIA WAVELETS

A. Fedorova, M. Zeitlin IPME, RAS, St. Petersburg, Russia

Abstract In part 2 we consider symplectic and Lagrangian struc-
%+res for the case of discretization of flows by correspond-
INng maps and in part 3 construction of corresponding so-
aIutions by applications of generalized wavelet approach
a\1\{hich is based on generalization of multiresolution anal-
afsis for the case of maps.

In this series of eight papers we present the applications
methods from wavelet analysis to polynomial approxim
tions for a number of acceleratphysics problems. In this
part we consider the applications of discrete wavelet an
ysis technique to maps which come from discretization
continuous nonlinear polynomial problemsancelerator
physics. Our main point is generalization of wavelet anal- 2 VESELOV-MARSDEN
ysis which can be applied for both discrete and continuous DISCRETIZATION
cases. We give explicit multiresolution representation fo|5

) . oo : .__Discrete variational principles lead to evolution dynamics
solutions of discrete problems, which is correct discretiza- .
. . . .analogous to the Euler-Lagrange equations [9]. Qdbe
tion of our representation of solutions of the correspondin

CONtNUOUS CASES g configuration space, then a discrete Lagrangian is a map
' L: @ x ¢ — R. usuallyl is obtained by approximating
the given Lagrangian. Fa¥ € N, the action sum is the

1 |NTRODUCT|ON mapS . QN+1 — R defined by
This is the fifth part of our eight presentations in which No1
we consider applications of methods from wavelet anal- g = Z L(qr1, qr), (1)
ysis to nonlinear accelerat@hysics problems. This is a b0

continuation of our results from [1]-[8], in which we con- ) ) _
sidered the applications of a number of analytical method¥n€resx € @, & > 0. The action sumis the discrete analog
from nonlinear (local) Fourier analysis, or wavelet analy©f the action integral in continuous case. Extremizihg
sis, to nonlinear acceleratphysics problems both general OV€r 1, -, ¢ -1 With fixing ¢o, ¢x we have the discrete
and with additional structures (Hamiltonian, symplectic oFuler-Lagrange equations (DEL):

uasicomplex), chaotic, quasiclassical, quantum. Wavelet
gnalysis isF,)a r)elatively no?/el set of mathgmatical methods, DaL(gst1, ax) + Di(gr, 44-1) = 0, 2)
which gives us a possibility to work with well-localized for f, = 1, ..., N — 1.
bases in functional spaces and with the general type of | gt
operators (differential, integral, pseudodifferential) in such P:QxQ—=0QxQ (3)
bases. In contrast with parts 1-4 in parts 5-8 we try to
take into account before using power analytical approach@gd
underlying algebraical, geometrical, topological structures ©(qk, gn-1) = (dh+1, 95) (4)
related to kinematical, dynamical and hidden symmetry d§ a discrete function (map), then we have for DEL:
physical problems.

In this paper we consider the applications of discrete DyLo®+ DL =0 (5)
wavelet analysis technique to maps which come from dis- . . :
cretization o%/continum?s nonlinegr polynomial problem§r in coordinateg” on ¢) we have DEL
in acceleratophysics. Our main point is generalization of oL oL
wavelet analysis which can be applied for both discrete and @ © ®(qrt1, ) + m(%ﬂ’ k) = 0. (6)
continuous cases. We give explicit multiresolution repre-
sentation for solutions of discrete problems, which is cott is very important that the magr exactly preserves the
rect discretization of our representation of solutions of theymplectic formw:

corresponding continuous cases. 921
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3 GENERALIZED WAVELET wherel, is the identity operator ifv* (R* is right inverse

APPROACH of D¥ in V*).
Given a sequence of discretizati¢, } and sequence

Our approach to solutions of equations (6) is based on agr ine corresponding reconstruction operatpfg,}, we
plications of general and very efficient methods developegkfine the operatorB’,j—l andP}_,

by A. Harten [10], who produced a "General Framework"

for multiresolution representation of discrete data. DZ_l — Dp_ 1R Vi Vey (13)
It is based on consideration of basic operators, decima-

tion and prediction, which connect adjacent resolution lev-

els. These operators are constructed from two basic blocks; .

the discretization and reconstruction operators. The formljfrthe setDy. in nested [10], then

obtains discrete information from a given continuous func- pk=lpk _ (14)

tions (flows), and the latter produces an approximation to koo Thel ot

those functions, from discrete values, in the same functiofhq we have for any € 7 and anyp € F for which the

Plf—l = DyRp_1: Vi1 =V,

space to which the original function belongs. reconstructior?,_, is exact:
A "new scale" is defined as the information on a given
resolution level which cannot be predicted from discrete D,’j‘l(Dkf) = Du_if (15)

information at lower levels. If the discretization and recon-

, . PF_(Dy_ = D
struction are local operators, the concept of "new scale" is k-1(Dx—1p) kP

also local. o _ _Let us consider any” € V', Then there isf € F such
The scale coefficients are directly related to the prediG, ¢
tion errors, and thus to the reconstruction procedure. If ol =Dyt (16)

scale coefficients are small at a certain location on a giv-
en scale, it means that the reconstruction procedure on tleid it follows from (15) that the process of successive dec-
scale gives a proper approximation of the original functioimation [10]
at that particular location. - 1
This approach may be considered as some generalization vt =Dy, k=1L, ..,1 (7)
of standard wavelet analysis approach. It allows to consid-
er multiresolution decomposition when usual approach példs for all
impossible §-functions case). We demonstrated the dis- " = Dif (18)

cretization of Dirac function by wavelet packets on Fig. Y the problem of prediction, which is associated with
and Fig. 2. _ ) the corresponding MR scheme, can be stated as a prob-
Let ' be a linear space of mappings lem of approximation: knowing)x_.f, f € F, find a
FC{flf : X > V), (8) "good approximation" forDy, f. It is very important that

each spac&” has a multiresolution basis
where X, Y are linear spaces. Let al$®, be a linear op-

erator By = {67} {05 )i Mo (19)
. k k _
Dy f = {v"}, v" = Dy, and that any” € V'’ can be written as
= (o}, of ey ©)
L
'II_'2t|s sequence correspondskdevel discretization ofX. vt = Z 0o + Z Z d‘lﬂ?’La (20)
g k=1 j
Di(F) = V* = span{1;’} (10)
and the coordinates of € V* inthis basis are* = {4}, where{d’} are thek scale coefficients of the associated
o e Sk MR, {#?} is defined by (11) witk = 0. If { Dy} is a nest-
o = Z il (11) ed sequence of discretization [10] afit, } is any corre-

; sponding sequence of linear reconstruction operators, then
D, is a discretization operator. Main goal is to design &€ have from (20) fov™ = Dy f applyingRy:
multiresolution scheme (MR) [10] that applies to all se-

L
guencess € S, but corresponds for those sequences D f= 70 40,1 dE L 21
v € ST, which are obtained by the discretization (8). RDrf = ZZ: froi + Z Z Vi (21)

H k= ]
Since D, mapsk ontoV'* then for any* C V* there a
is at least on¢ in F such thaiD; f = v*. Such correspon- where
dence fromf € F tov* € V* is reconstruction and the B B
corresponding operator is the reconstruction oper&tor (b?’L = RL¢>?’L € F, wf’L = Ru/)f’L € F,
Rp:Vi = F,  DyRp =1, (12) Dof =3 find. (22)
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Figure 1: Wavelet packets.

Figure 2: The discretization of Dirac function.

WhenI — oo we have sufficient conditions which ensure
that the limiting procesg — oo in (21, 22) yields a mul-
tiresolution basis fo’. Then, according to (19), (20) we
have very useful representation for solutions of equations
(6) or for different maps construction in the form which are
a counterparts for discrete (difference) cases of construc-
tions from parts 1-4.
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